THE RATES OF SEDIMENTATION AND THE DETERMINATION OF THE BOUNDARIES OF ANNUAL LAYERS OF THE ANNUALLY-STRATIFIED DEPOSITS OF PROGLACIAL LAKE KUCHERLA (ALTAY) ACCORDING TO THE DATA FROM SCANNING MICRO-X-RAY FLUORESCENCE ANALYSIS BASED ON SYNCHROTRON RAD

 

DOI: 10.24411/1728-323X-2018-13070

Section

Physical geography and biogeography, soil geography and landscape geochemistry

Title

THE RATES OF SEDIMENTATION AND THE DETERMINATION OF THE BOUNDARIES OF ANNUAL LAYERS OF THE ANNUALLY-STRATIFIED DEPOSITS OF PROGLACIAL LAKE KUCHERLA (ALTAY) ACCORDING TO THE DATA FROM SCANNING MICRO-X-RAY FLUORESCENCE ANALYSIS BASED ON SYNCHROTRON RADIATION

Сontributors

F.A. Darin, Junior Researcher, Institute of Geography of the RAS, Moscow; Ph. D. Student, G. I. Budker Institute of Nuclear Physics, SB RAS, This email address is being protected from spambots. You need JavaScript enabled to view it., Novosibirsk,

O.N. Solomina, Director, Institute of Geography of the RAS, Moscow,

A. M. Grachev, Senior Researcher, Institute of Geography of the RAS, Moscow,

A. V. Darin, Senior Researcher, V. S. Sobolev Institute of Geology and Mineralogy, Novosibirsk,

I.V. Rakshun, Scientific Secretary, G. I. Budker Institute of Nuclear Physics, SB RAS, Novosibirsk,

D.S. Sorokoletov, Junior Researcher, G. I. Budker Institute of Nuclear Physics, SB RAS, Novosibirsk

Abstract

Methodological issues of conducting micro-analytical studies of the bottom sediments of the proglacial lakes, containing annually laminated layers (“glacial clays”) are considered. Solid samples impregnated with epoxy resin were made from the samples of bottom sediments of high mountain pro-glacier lake Kucherla (Altai) with visually discernible annual layers. The procedure for preparingthe samples allowed us to preserve the original structure and composition of the sediment. The data were obtained on the changes of rock forming elements and microelements in the annual cycle of sedimentation. Scanning X-ray fluorescence microanalysis of the samples was carried out at the experimental facility at the Collective Use Center “Siberian Center for Synchrotron and Terahertz Radiation” (INP SB RAS, Novosibirsk). The scanning profiles with the step of 100 ЦШ, containing data on the distribution of more than 20 elements, were combined with the photographs of the surface of the investigated samples. The initial experimental data for estimating the sedimentation rate and for uncovering the lithologic-geochemical features of the sedimentation process have been obtained. This material is also suitable for determining the quantitative characteristics of the relationship between the composition and structure of the sediment and the data of instrumental meteorological observations.

Keywords

paleoreconstructions, sediments, periglacial lakes, X-ray fluorescence analysis, synchrotron radiation, sedimentation, elemental composition.

References

1.    De Geer, G. Zeitschrift furallegemeineGeologie, 1912 v. 3, p. 457—471.

2.    Ojala, A. E. K., Francus, P., Zolitschka, B., Besonen, M., Lamoureux, S. F., 2012. Quat. Sci. Rev. 43, 45—60.

3.    Zolotarev K. V., P. A. Piminov, A. D. Nikolenko, V. A. Trunova, N. V. Polos'mak, K. E. KuperNaukaizpervikhruk, 2015, P. 10—18 [in Russian]

4.    Baryshev V. B., Gavrilov N. G., Daryin A. V., Zolotarev K. V. et а1. Scanning x-ray fluorescent microanalysis of rock samples. Rev. Scientific Instruments. 1989. Vol. 60. No 7. Part II. P. 2456—2457.

5.    Daryin A. V., Baryshev V. B., Zolotarev K. V. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1991. Vol. 308. No. 1, 2. Р. 318—320.

6.    Grachev M. A. et al. Geologiyaigeophizika. 1997. Vol. 38. No. 5. p. 957—980. (in Russian)

7.    Phedorin M. A., Zolotarev K. V., Bobrov V. A. Nuclear Instruments and Methods in Physics Research. Section A: Acceler­ators, Spectrometers, Detectors and Associated Equipment. 1998. Vol. 405. No. 2—3. P. 560—568.

8.    Zolotarev K. V., Goldberg E. L., Kondratyev V. I., et al. Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2001. Vol. 470. No. 1—2. P. 376—379.

9.    Goldberg E. L., Grachev M. A., Phedorin M. A. et al. Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2001. Vol. 470. No. 1—2. P. 388—395.

10.    Daryin A. V., Kalugin I. A., Maksimova N. V. et al. Nucl. Instruments and Meth. Phys. Res. 2005. V. A543. P. 255—258.

11.    Phedorin, M. A., Bobrov, V. A., Chebykin, E. P., Goldberg, E. L., Melgunov, M. S., Filippova, S. V., Zolotarev, K. V. Ge­ostandards Newsletter: The Journal of Geostandards and Geoanalysis 2000a, 24, 205—216.

12.    Phedorin, M. A., Bobrov, V. A., Goldberg, E. L., Navez, J., Zolotaryov, K. V., Grachev, M. A. Nuclear Instruments and Methods in Physics Research A 2000b, 448, P. 394—399.

13.    Trunova V. A. Thesis for Dr. Habil. 2017 [in Russian]

14.    Darin A. V., Rakshun I. V. Nauchniyvestnik NGTU, 2013. No. 2 (51). P. 119. [in Russian]

15.    Darin A. V., Kalugin I. A., Rakshun I. V. Isvestiya RAN. Seriyafizicheskaya, 2013. Vol. 77. No. 2. p. 210. [in Russian]

16.    Sorokoletov D. S., Rakshun I. V., Darin A. V. Avtometriya, 2015. Vol. 51. No. 3. P. 94—103. [in Russian]

Darin F. A., Kalugin I. A., Darin A. V., RakshunYa. V. Acta GeologicaSinica (English Edition). 2014. Vol. 88. No. S1. P. 5—6.